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Abstract Considering the continuous characteristics for water waves propagating over complex topography in the
nearshore region, the unified nonlinear equations, based on the hypothesis for a typical uneven bottom, are presented by
employing the Hamiltonian variational principle for water waves. It is verified that the equations include the following
special cases: the extension of Airy’s nonlinear shallow-water equations, the generalized mild-slope equation, the dis-
persion relation for the second-order Stokes waves and the higher order Boussinesq-type equations.
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For a long time people have tried to establish unified equations for water wave propagation from
deep to shallow water, including the mild-slope equation'', higher order Boussinesg-type equa-
tions'2~5), and the Green-Naghdi theory!®!, in order to break through the combined wave theories
consisting mainly of Stokes deep-water wave theories and shallow-water wave theories. This is most
important for realizing the rational distribution and the optimal design of offshore and coastal engineer-
ing projects.

Because of the complexity of wave propagation in the nearshore region, the unified theories have
the following limitations. The mild-slope equation can only be used for describing linear monochro-
matic waves, but not for finite-amplitude waves. On account of the drawback of weak nonlinearity and
weak dispersion, the higher-order Boussinesq-type equations cannot provide accurate numerical results
when the water depth is approximate or equal to a wave length. The Green-Naghdi theory can be re-
garded as a new type of water wave theory with applicable potential, but it can hardly be widely ac-
cepted and applied to the practical engineering due to the complexity of its mathematical formulation.
In view of these problems, this paper provides the unified equations which include the currently used

main wave equation theories, according to the Hamiltonian variational principle for water waves.
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1 Hamiltonian formulation of water waves

Consider a potential flow of an incompressible inviscid fluid of constant density p with gravity g .
Its surface elevation {(x, y, t) is assumed to be a single-valued function of the horizontal coordi-
nates x and y. And as x? + y>—>0, { together with all its derivatives and the velocity field V&
tends to zero. The total energy of the wave motion is given as the sum of the potential energy and the
kinetic energy:

H = —;—pf I Hydxdy, (1)
where
_ L e ljc 2 (-3_45)2
Ho = g6t + 5| d:[(Ver«(57)] (2)
. . . . . . a a
is the Hamiltonian density, in which A(x, y) denotes the water depth and V = (Z , 5—)') .

The surface elevation {(x, y, t) and the velocity potential at the free surface $(x, y, t) =
&(x, y, £(x, y, t), t) are canonical variables of Hamiltonian functional H( ¢, #). Taking the

variational derivatives of H, the canonical evolution equations

3 IH

pgg = 34’ (3a)
d dH

103_9,s =T ot (3b)

are respectively equivalent to the kinematic and dynamic boundary conditions at the free surface. This
is the basic content of the Hamiltonian variational principle. Using the Lagrangian density

L= ¢34 o, @)

we have the Euler-Lagrange equations which are identical to the canonical equations (3a) and (3b)

2 Derivation of the nonlinear unified equations

The mild-slope equation is based on the mild-slope assumption, but the uneven bottoms involve
the ‘abrupt-slope topography as well, such as rippled beds, sand bars, and offshore reefs. Thus we
now adopt Liu and Dingemans’s choice!”) for the depth variations consisting of a slowly varying com-
ponent ho(x) and a fast varying component h,(x) (x=(x, y)):

h = ho(ﬂX) + 72h1(x)’ (6)
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0(p) = o(Z’,;) - o4 <1, 0tk ~ 00, o(B) - 0. @)

Parameter A , the horizontal length scale for ho(x ), is much longer than a typical wave length
of the surface waves. The variation of h, within a wave length is small. The horizontal length scales of
h, are in the same order of magnitude as the wave length and the size of h, is, however, small. Sym-

bols 3 and 7 denote the small modulation parameters and are assumed to be of the same order of mag-
nitude, i. e. O0(B) = 0(7), and A =2n/k is a wave length of the surface wave.

With respect to the structure of the solution for linear waves, the velocity potential can be ap-
proximately expressed as'®
coshk(h + z)
coshk(h + §)¢('t’ 1) = f. (8)

The characteristic value k is the positive solution of the equation

w? = gktanhk(hy + ), (9)

di(x, Z, t) =

and clearly ®(x, ¢, t)=9(x, y, ¢t). When { =0, f is just the solution of linear waves; and
Eq. (9) is changed into the usual linear dispersion relation. We expand f(z, k) into a Taylor’s se-
ries about h = h; and obtain

f(z, h) = fo(zy ho) + 72h1f1(1y ho), (10)

_ coshk(z + hg) _ ksinhk(z - ;)
folzs ko) = coshk(hy + £o)’ filzs ho) = cosh’k(hg + &)

(11)
From Eq. (2), we have
Hy =588 + 2(9% - 9$)(La, - Yash))
+ —;—¢2[(a3k £ V2ash B (VE -V E) + ask(Vhy » V hy)
+agk Vi (Vho+ Y2V hy) + ark + YPa,h k*] - ¢V - {al[a + Y2kh (1 - 63)] V¢
+ %az[v ho + Y*(V hy - 20kh, V g)]}+ —;—yzhl{as(w - V$)

+ agh?$3(VE - VE + 2V » Vhy) = 28V « [aoh(VE + Vhy) + a“h,kzvg]}, (12)

in which o = tanhk(hy + {). And the detailed expressions for the dimensionless parameters a;(i =

1, 2, -=-11) are given as follows:

1 1
a; = 5[0‘ + q(l - 02)], a, = qa(l - 0.2), az = 3‘02[0 + q(l _ 02)],

1
as = 0(1 - 62)(q + 0 - 2g6%), a5 = ?(— g+0+2¢g° - 0® - qo*), ag = go*(1 - 4?),



1 ]

(1]

£ )

No. 10 HUANG et al : NONLINEAR UNIFIED EQUATIONS FOR WATER WAVES 749

a; = %[a’—q(l—dz)], ag = 1—0'2, g = 02(1-02))
Ay = 6(1 - 62), a; = (1 - 62)2,
where ¢ = k(& + hy).

Combining Eqs. (3a), (3b) and (12), the nonlinear unified equations for water waves propa-
gating over uneven bottoms can be obtained :

a¢ IH aH,
a_t="a?o+v'(av0§) (138)

Eqgs.(13a) and (13b) are implicit expressions.
3 Special cases

Now let us analyze the explicit expressions for Eqs.(13a) and (13b) under some special condi-

tions, and relate them to a number of currently used equation theories for water waves.

3.1 Generalized Airy’s nonlinear shallow-water equations

For finite-amplitude and very long waves, i.e. € = hio = 0(1), u = (khy)’<l, where a is
wave amplitude, from Eq. (12) we have '

H, = %ggz N %(ho + ¢+ PR (V8 - V8) — ¥ k2h,(hy + 2(ho + £)1$V$ - VE. (14)
Let U = V¢ and combine Eqs. (13a), (13b) and (14). Then the extended Airy’s nonlinear shal-

low-water equations can be given as

%f #V [(ho + €+ 72h)U) = 78V « [ B K2[2(he + £) + k1 VE} = 0, (158)

%—’tf + U-VU + gVE + 72{VY - [h 28U (2hg + hy)]
+2[V . (b k*$U) VE + EVV - (hyE*$U) ]} = 0. (15b)

3.2 Generalized mild-slope equation
For small-amplitude waves, from Eq. (12) we have

H, =%g§2 + _;_(V?‘ . V¢)[71;a’1 + 7 (a'g - a'z)h1] + %9‘2[“'7" + a'sk(Vhg » Vhg)
2 1 2 1 ' 2 1 ' ’
+ )’azhlk ]—¢V¢- [—2-01 2Vh0+ Y(EQ 2Vh1+a10kh1Vh0)]. (16)

Making ¢ =0 in the a; terms leads to the corresponding terms a’;. From Egs. (13a), (13b), and
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(16), we get

zg = ¢{al7k + a’sk(V hO Y ho) + 72a,2h1k2 + v. [_;"a’zv ho

" (17a)
+ )’2( %—a'thl + khja'y V ho)] }- v. {[-’lt_afl + 7R (g - a'z)]V ¢},
%é = - &t (17b)

Eliminating ¢ from (17a) and (17b) and ignoring the resulting higher-order terms of 0(y%8%), we
have generalized time-dependent mild-slope equation

'aaz_f + (wz _ kZCCg)?‘ -V. (CC5V¢) + g[F1¢ -V. (F2 V¢)] = 0’ (18)

where

Fy = a'sk(Vho + Vho) + 5 ¥+ (o3 Vho + ¥, Thy)
(19)
+ 72[a'2h1k2 + Vho ° V (allokhl)],

Fz = 72h1(a'3 - 0,2)- (20)

[10] on different assumptions

Equations similar to Eq. (18) were obtained by Kirbym and Dingemans
for fast varying topography, and by Huang et al. [11] who considered the effects of both uneven bottoms

and ambient currents.

3.3 Stokes waves theory
1

For deep-water waves: kh—> o such that a; = a; = a3 = 27 and the remaining ; terms are all

zero. Thus from Eq. (12) we obtain

Ho = Sat? + (V8 - vey 4 Las. 21)

The canonical equations can be obtained with Eqs. (13a) and (13b):
Lo wvyrs Teavgvps <o, (22a)
g vt + %v. [$(V$ - kVE)] = 0. (22b)

From Eq. (21) we can infer the famous Stokes second-order dispersion relation'®’

w = @(1 + %k%z). (23)

3.4 Higher order Boussinesq-type equations

o
There are two important parameters for shallow water: the nonlinearity, ¢ = l_z_ , and the disper-
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sion, u = (kh), where h is the average water depth. We use dimensionless variables.

] 1] ho ’ hl
X h h,h1='="h,
S P :_(_3 _a)
Ceat ‘e@h"'v s @)

From Eq. (4) we have

(25)

]
—~
[0}
>
)
~
t~
[~4

e (£ 2 )
in which H'; can be written as (omitting the primes) :
1 1 2 2
=-§‘§2 + E(V?S . V¢){[h0(l + e,—f;)- ?yhg(l + ef;) ]
4 2
nflr e of)- Sl o))

1 ,,] 2,3 £ 2 23 12

+E¢ e2(V L - VO hd 1+eh0 + 2724k hd
+—;-,u2h8(V ho-Vho)(l + e’-s;)

+ e,uzhg(l + ef;)vg « (Vb + 72Vh1)}— $Vé - {euhd(V Y)
(10 e8] o2 ) 2

ho ho
7%h, 5 . 5_) 2, )]
+ o (1—3/1h0(1+€h 3,uh0
LIy 5_) 2 24( 5_)2)
+[(2,uh0(l+eh0 _3'uh°1+€h0 V ok

i 2
+ 72((3#’1%(1 + € I%)_ §#2h3(1 + 5’%) )V hl - e#lhlho(v C)

(i1 + € 55) - 304)) ]
. %yzhl{(VS‘s . v¢)[1 - #h(’-’,(l + € ’%) - %;ﬂhé(l + € ’%)2]
+ 92 22 RA(VE - VE) + 26u7RY(VE -+ Thy)

- S hY(VE - Vhy)| - 2675 - [ vt + Vo) ko - 5 "2”0(1 e h%))

+ ehl(VC)(p - 2Rk + g,ughg)]} + ?¢2{?ph3(1 + € ’%)2 (26)
+ Vzhl[,uh(z,(l + € ]-f; - %yzha(l + € ’%))2]}

The non-dimensional equations corresponding to Eqs. (5a) and (5b) are formally identical to the
latter. Therefore, by omitting the primes ,and from Eqs. (5a), (5b), (25), and (26), we have
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the following equations:

o forfnft e e £)- Zufr e £ -

0
4 2
72h1(,uh(2,(1 ve h%) - g,ﬂhg(l ve f;) ]
2 2 £V 1 2.4 _E_)Z]}
+ 7 hlv¢[1 —Fho(l + eho)— 3# ho(l + Eho
- ¢{52(V§ . vz;)[,ﬁhg(l + € fg) + 272p2h1h§]
1 2,3 £ 2,3
+ ?F ho(vho . Vho)(l + € h0)+ (773 hO(VC)
(1 + € ’%) * (Vho + V2 Vhy) + )’2h1[ e2u*hi(VE - Vi)
+ 2ep2h3(VE « Vhy) - %eyshﬁ(vg . Vho)] + %,uhg
2
(1 + e,‘%) + )’zhl[ph%(l + e’{;)
4 2 2
- ?,uzhf;(l + e’%) ]} - ¢V {e,.zh%(V{)[(l + € ’-&)- ,uhf,(l + 2¢ }-&)4. —9—#2};3
7*h 5
RIS
[(%,uh%(l +€ f;) 2h“(l + € )Vh0

+ 72( (%/xh%(l + € I%) 2h4( ) )Vhl

h
- ehiho(V0)(hd(1+ € i) - Tt )|}

A
L

- y2¢\7{h1[(e Vs Vho)(,uho - %,ﬁh?,(l + s’%))
+ chy (V) (- 2u2h2 + 3,13h“)]} (27a)
%+C+(V¢°V¢)[%€- E#ho—Vh(l"-#hO" 45/‘2"8)]

+ ¢2[ %eyh% + —é—elzzh%(v ho * V hy)

+ 7h ( ephgy - ge)uzho ] $Ve. [(V ho) ( ;e,uho - %eﬁhg)
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.

1 4
+ 73V hl)(?sf‘ho - _3'5#2’”(3))]
4

Tenhisvs - Vho| -

+ 7hy[ (V8 - T)( = Seuho - euhd) +

V- {¢2[%ep2hS(Vho + Y2 Vh) + yzhl(Vho)(eyzhg - %ey’h‘(‘)))]

- VB[ euhd - pths + Zephs

+ 7Ry (2eahy - 4en?h3 + Tephs + b e - 2ep7hE 4 %e,ﬁhg))]} = 0. (27b)

Eqs. (27a) and (27b) constitute the new Boussinesq-type equations containing higher order terms

(3 J

than others, thus improving the predictability on the propagation characteristics of water waves.
4 Concluding remarks

In view of the urgent requirement of the unified water wave equation for offshore and coastal en-
gineering practice , the nonlinear unified equations (13a) and (13b) for water waves propagating over
typical uneven bottoms are derived using the Hamiltonian variational principle for water waves.
Though implicitly given, the unified equations include three kinds of wave equations and one kind of

dispersion relation .

Owing to the fact that pure waves rarely exist in the nearshore region, it is imperative to bring
the wave-current interaction into the unified equation, that is, developing the unified equations for
wave-current interactions over uneven bottoms in the complex dynamical nearshore environment. The

work is in progress.
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